skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jin, Haojian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 12, 2026
  2. We present Peekaboo, a new privacy-sensitive architecture for smart homes that leverages an in-home hub to pre-process and minimize outgoing data in a structured and enforceable manner before sending it to external cloud servers. Peekaboo’s key innovations are (1) abstracting common data preprocessing functionality into a small and fixed set of chainable operators, and (2) requiring that developers explicitly declare desired data collection behaviors (e.g., data granularity, destinations, conditions) in an application manifest, which also specifies how the operators are chained together. Given a manifest, Peekaboo assembles and executes a pre-processing pipeline using operators pre-loaded on the hub. In doing so, developers can collect smart home data on a need-to-know basis; third-party auditors can verify data collection behaviors; and the hub itself can offer a number of centralized privacy features to users across apps and devices, without additional effort from app developers. We present the design and implementation of Peekaboo, along with an evaluation of its coverage of smart home scenarios, system performance, data minimization, and example built-in privacy features. 
    more » « less
  3. In this paper, we studied people’s smart home privacy-protective behaviors (SH-PPBs), to gain a better understanding of their privacy management do’s and don’ts in this context. We first surveyed 159 participants and elicited 33 unique SH-PPB practices, revealing that users heavily rely on ad hoc approaches at the physical layer (e.g., physical blocking, manual powering off). We also characterized the types of privacy concerns users wanted to address through SH-PPBs, the reasons preventing users from doing SH-PPBs, and privacy features they wished they had to support SH-PPBs. We then storyboarded 11 privacy protection concepts to explore opportunities to better support users’ needs, and asked another 227 participants to criticize and rank these design concepts. Among the 11 concepts, Privacy Diagnostics, which is similar to security diagnostics in anti-virus software, was far preferred over the rest. We also witnessed rich evidence of four important factors in designing SH-PPB tools, as users prefer (1) simple, (2) proactive, (3) preventative solutions that can (4) offer more control. 
    more » « less
  4. Despite slow adoption in the US, mobile payments are thede facto solution for hundreds of millions of users in China for everything from paying bills to riding buses, from sending virtual "Red Packets'' to buying money-market funds. In this paper, we use the theoretical lens of infrastructure to study users' interactions with ubiquitous mobile payment systems in China, focusing on Alipay and WeChat Pay, the two dominant apps on the market. Based on data from a survey (n=466) and follow-up interviews (n=12) with users in China, we describe the diverse usage patterns across physical, social, and digital ubiquity, and a series of challenges people face. Reflecting on the lessons we learned from the Chinese case -- in particular, problems and pitfalls -- we discuss some implications both for design and for policy. Our findings have important implications for other countries that have been moving towards greater adoption of mobile payments. 
    more » « less
  5. Ensuring effective public understanding of algorithmic decisions that are powered by machine learning techniques has become an urgent task with the increasing deployment of AI systems into our society. In this work, we present a concrete step toward this goal by redesigning confusion matrices for binary classification to support non-experts in understanding the performance of machine learning models. Through interviews (n=7) and a survey (n=102), we mapped out two major sets of challenges lay people have in understanding standard confusion matrices: the general terminologies and the matrix design. We further identified three sub-challenges regarding the matrix design, namely, confusion about the direction of reading the data, layered relations and quantities involved. We then conducted an online experiment with 483 participants to evaluate how effective a series of alternative representations target each of those challenges in the context of an algorithm for making recidivism predictions. We developed three levels of questions to evaluate users’ objective understanding. We assessed the effectiveness of our alternatives for accuracy in answering those questions, completion time, and subjective understanding. Our results suggest that (1) only by contextualizing terminologies can we significantly improve users’ understanding and (2) flow charts, which help point out the direction of reading the data, were most useful in improving objective understanding. Our findings set the stage for developing more intuitive and generally understandable representations of the performance of machine learning models 
    more » « less